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Data Hunger: Why N-Gram Models 
Struggle with Sparsity (and What Modern 
LLMs Do Differently) 
 

TL;DR: Higher-order n-gram models struggle with the exponential data requirements 
and sparsity issues of capturing language patterns, while modern LLMs overcome these 
challenges with neural architectures, embeddings, and sub-word tokenization. 

 
In this post, we will explore why traditional n-gram models hit a wall as they attempt to 
use more context, delving into their insatiable appetite for data and the problems 
caused by sparsity. We’ll also contrast these limitations with the breakthroughs of 
modern large language models (LLMs), which have transformed how we approach 
language modelling. 

Introduction 
Imagine you start building a language model with a simple approach: counting how 
often certain words follow each other. You begin with something very basic - just look at 
one word at a time (unigram), or maybe pairs of words (bigrams). With a modest amount 
of text, you can create a model that occasionally produces semi-coherent short 
fragments. Encouraged by this, you decide to add more context to improve coherence. 
Instead of just looking at single words or pairs, what if you consider three words or four 
words at a time?  

In the last post, we did just that: we got up to trigrams (three-word sequences) to 
demonstrate with very little code and a sample text of a million words that plausible 
language can be generated. 

Moving up to 4 or 5 words sounds like a natural step - more context should mean more 
natural-sounding text, right? The catch is that as you increase the number of words in 
your “window,” you also increase the complexity of your model. Suddenly, the amount 
of data you need to avoid repetitive, looped, or nonsensical output skyrockets. Without 
a massive amount of text, your new higher-order model might just keep repeating the 
same phrases over and over, or struggle to find any valid next words at all. 

In this post, we’ll explore why going beyond trigrams into tetragrams and beyond 
requires exponentially more text, what happens when you don’t have enough data, and 
how this connects to the broader world of advanced language models. By the end, you’ll 
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have a clearer picture of how the desire for richer local context leads straight into the 
arms of ever-growing datasets. 

A Quick Refresher on N-Grams 
First introduced by Claude Channon in his highly influential paper, “A mathematical 
theory of communication” (Shannon, 1948), n-grams are sequences of n consecutive 
words (or tokens) extracted from text. For example, if n = 2, we talk about bigrams, 
which are pairs of consecutive words like “natural language” or “machine learning.” 
Similarly, if n = 3, we have trigrams, such as “large language models.” 

In Natural Language Processing (NLP), n-grams are used to build simple statistical 
models of language. By counting how often certain sequences of words appear, these 
models can predict the next word in a sentence, generate text, or estimate how 
“natural” a piece of text sounds. The basic idea is: if you know which words frequently 
follow one another, you can guess the next word more accurately. This approach 
doesn’t require any understanding of the text’s meaning; it’s purely based on patterns 
observed in sample documents. 

In natural language, even a very large text corpus can’t contain every possible word 
sequence. Many n-grams will be rare or unseen (Jurafsky & Martin, 2024). A basic 
frequency-based model would assign zero probability to these unseen n-grams, which 
isn’t very practical. Smoothing techniques adjust the raw frequency counts so that the 
model can assign a small, non-zero probability to unseen or rare n-grams, thus 
improving generalization and overall model performance. Kneser-Ney smoothing 
(Kneser & Ney, 1995) became a seminal advancement in how n-gram probabilities are 
estimated, improving performance over more basic smoothing techniques and 
becoming a standard baseline method in n-gram language modelling. 

Data Requirements Grow Exponentially 
When you move from bigrams to trigrams, and then to tetragrams and beyond, you’re 
essentially increasing the “resolution” of your language model. Each additional word in 
the context window doesn’t just add a little complexity, it multiplies the number of 
possible sequences the model needs to keep track of. 

Consider a simple example: 

• Suppose you have a vocabulary of V unique words. 

• A unigram model just counts how often each single word appears, so it deals 
with V possible items. 
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• A bigram model considers pairs of words. In theory, there could be up to V × V = 
V² possible bigrams. 

• A trigram model looks at triplets, so that’s up to V³ possible trigrams. 

In practice, the size of your vocabulary depends on your dataset and how you process it. 
If you’re dealing with English text and apply some basic normalization (like lowercasing 
and removing very rare words), you can still easily end up with tens of thousands of 
unique words. For instance: 

• Small, Curated Texts: A focused dataset (e.g., specific domain literature) might 
have a few thousand unique words. 

• General English Text (News, selective Wikipedia): It’s common to see 50,000 to 
200,000 unique words, even after filtering out extremely rare terms. 

• Large, Unfiltered Corpora: With large and diverse datasets (like the entirety of 
Wikipedia or large web crawls), the raw vocabulary can reach into the millions, 
including proper nouns, technical terms, and rare words. Many NLP practitioners 
then apply methods to reduce or manage this vocabulary, such as using sub-
word tokenization. 

In our previous post, we combined some classics into a single text file for our gentext.py 
program to use. Let’s see how many unique lowercase words were contained in this 
corpus of just over a million words overall: 

 

11:31:31 User@AN20 ~/Demystifying LLMs 491 0 😊 $ tr '[:space:]' '\n' < 
sample.txt | tr '[:upper:]' '[:lower:]' | sort -u | wc -l 

69132 
 

 
So gentext.py was working with V = 69,132 and we moved up to a trigram model making 
a possible 330 trillion trigrams! Let’s see with our million-word corpus how many 
trigrams were actually created – here’s the existing code with some print statements 
added: 

 

# ------------------------- 

# TRIGRAM MODEL (WORD-BASED) 

# ------------------------- 

trigram_counts = defaultdict(Counter) 

for i in range(len(words)-2): 

    pair = (words[i], words[i+1]) 

    next_word = words[i+2] 

    trigram_counts[pair][next_word] += 1 

 

# Print some stats about the trigram model 
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num_unique_pairs = len(trigram_counts) 

num_unique_trigrams = sum(len(cdict) for cdict in trigram_counts.values()) 

print("Trigram model stats:") 

print(f"Number of unique word pairs (contexts): {num_unique_pairs}") 

print(f"Number of unique trigrams (contexts + next word): {num_unique_trigrams}") 

 

 
Running this gives us: 

 
Trigram model stats: 
Number of unique word pairs (contexts): 360680 
Number of unique trigrams (contexts + next word): 792356 
 

 

So nearly 800k trigrams from a million-word dataset may indicate richness and diversity 
but it’s still very sparse compared to the full combinatorial space. 

Let’s try a different dataset. We could use the set of over 200k Jeopardy questions and 
answers. This is a 53MB JSON file that looks like this: 

 

01:10:21 User@AN20 ~/DataHungerOfN-GramModels 421 130 😡 $ head -c 1350 
JEOPARDY_QUESTIONS1.json 

[{"category": "HISTORY", "air_date": "2004-12-31", "question": "'For the 
last 8 years of his life, Galileo was under house arrest for espousing this 
man's theory'", "value": "$200", "answer": "Copernicus", "round": 
"Jeopardy!", "show_number": "4680"}, {"category": "ESPN's TOP 10 ALL-TIME 
ATHLETES", "air_date": "2004-12-31", "question": "'No. 2: 1912 Olympian; 
football star at Carlisle Indian School; 6 MLB seasons with the Reds, Giants 
& Braves'", "value": "$200", "answer": "Jim Thorpe", "round": "Jeopardy!", 
"show_number": "4680"}, {"category": "EVERYBODY TALKS ABOUT IT...", 
"air_date": "2004-12-31", "question": "'The city of Yuma in this state has a 
record average of 4,055 hours of sunshine each year'", "value": "$200", 
"answer": "Arizona", "round": "Jeopardy!", "show_number": "4680"}, 
{"category": "THE COMPANY LINE", "air_date": "2004-12-31", "question": "'In 
1963, live on \"The Art Linkletter Show\", this company served its billionth 
burger'", "value": "$200", "answer": "McDonald\\'s", "round": "Jeopardy!", 
"show_number": "4680"}, {"category": "EPITAPHS & TRIBUTES", "air_date": 
"2004-12-31", "question": "'Signer of the Dec. of Indep., framer of the 
Constitution of Mass., second President of the United States'", "value": 
"$200", "answer": "John Adams", "round": "Jeopardy!", "show_number": "4680"}, 
 

It's all on one line and, being a JSON file, has some useful metadata. Let’s strip out only 
the questions and answers using rather brilliant jq: 

 

01:08:22 User@AN20 ~/DataHungerOfN-GramModels 302 0 😊 $ jq -r '.[] | 
(.question, .answer)' JEOPARDY_QUESTIONS1.json > sample.txt 

01:08:34 User@AN20 ~/DataHungerOfN-GramModels 314 0 😊 $ wc -w sample.txt 
3572429 sample.txt 

01:08:42 User@AN20 ~/DataHungerOfN-GramModels 322 0 😊 $ head sample.txt 
'For the last 8 years of his life, Galileo was under house arrest for 

espousing this man's theory' 
Copernicus 
'No. 2: 1912 Olympian; football star at Carlisle Indian School; 6 MLB 

seasons with the Reds, Giants & Braves' 
Jim Thorpe 
'The city of Yuma in this state has a record average of 4,055 hours of 

sunshine each year' 
Arizona 

https://drive.google.com/file/d/0BwT5wj_P7BKXb2hfM3d2RHU1ckE/view?resourcekey=0-1abK4cJq-mqxFoSg86ieIg
https://drive.google.com/file/d/0BwT5wj_P7BKXb2hfM3d2RHU1ckE/view?resourcekey=0-1abK4cJq-mqxFoSg86ieIg
https://jqlang.github.io/jq/
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'In 1963, live on "The Art Linkletter Show", this company served its 
billionth burger' 

McDonald\'s 
'Signer of the Dec. of Indep., framer of the Constitution of Mass., second 

President of the United States' 
John Adams 

01:21:54 User@AN20 ~/DataHungerOfN-GramModels 114 0 😊 $ tr '[:space:]' 
'\n' < sample.txt | tr '[:upper:]' '[:lower:]' | sort -u | wc -l 

281792 
 

 
OK, so we now have a 3.5m word count sample.txt with 281,792 unique words which 
generate… 

 
Trigram model stats: 
Number of unique word pairs (contexts): 1273837 
Number of unique trigrams (contexts + next word): 2508025 
 

…2.5m trigrams. 

Oh dear, this is even more sparse - V is much larger now and needs to be cubed but the 
number of trigrams hasn’t increased by the same magnitude. Let’s put this into 
numbers by defining sparsity and plugging in the values for the 2 modules: 

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
𝑁𝑢𝑚 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑁𝐺𝑟𝑎𝑚𝑠 𝑜𝑓 𝑉𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑁𝐺𝑟𝑎𝑚𝑠 𝑜𝑓 𝑉𝑁
 

The sparsity value ranges between: 

• 0 (no sparsity): Every possible n-gram has been observed. 

• 1 (complete sparsity): None of the possible n-grams have been observed. 

For dataset 1: 

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
792356

691323
= 1 −

792356

3.3 × 1014
≅ 1 − 2.4 × 109 ≈ 1 

The sparsity is extremely close to 1, meaning only an infinitesimal fraction of all possible 
trigrams has been observed. And for dataset 2: 

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
2508025

2817923
= 1 −

2508025

2.24 × 1016
≅ 1 − 1.12 × 1010 ≈ 1 

Again, the sparsity is overwhelmingly close to 1, even though the dataset is larger and 
captures more trigrams. 

Hitting the Limits With Small Datasets 
We saw above how data sparsity rears its head because the model needs enough 
examples of each n-gram to accurately estimate probabilities. With high sparsity, we 
would get dead ends, repetitive loops and overfitting. 
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These issues highlight why early statistical approaches often stopped at trigrams. As 
soon as you push to tetragrams or more, the data demands skyrocket further, and small 
to moderate datasets can’t keep up. This becomes a hard practical limit, showing why 
either much larger corpora or more advanced modelling techniques (like smoothing, or 
ultimately, neural networks) are essential for better language modelling. 

As an example of a large dataset, Google’s “Web 1T 5-gram” model is an impressive pre-
computed n-gram model with the following stats (Franz & Brants 2006): 

Tokens 1,024,908,267,229 

Sentences 95,119,665,584 

Unigrams 13,588,391 

Bigrams 314,843,401 

Trigrams 977,069,902 

Fourgrams 1,313,818,354 

Fivegrams 1,176,470,663 

Without even doing the calculations, I think it is obvious that even this has the sparsity 
problem - simply because the vocabulary size (approximately the same as the count of 
unigrams depending on tokenization) is so large at over 13m, despite generating 977m 
trigrams from the 1 trillion source! 

Comparisons to Advanced Language Models 
While higher-order n-gram models illuminate the exponential data requirements for 
capturing language patterns, modern large language models (LLMs) have taken a 
different route. Instead of explicitly enumerating all possible n-gram sequences, they 
leverage neural network architectures (e.g., Transformers) that learn continuous 
representations of words and context. This approach provides several advantages: 

• Continuous embeddings vs. discrete N-Grams 

o In an n-gram model, each word is a discrete unit, and we track exact 
counts of sequences. This can quickly become sparse as n grows. 

o By contrast, LLMs embed words (or more often, sub-word tokens) into 
high-dimensional vectors. Similar words or phrases end up close to each 
other in this continuous space, reducing the sparsity problem. The model 
can generalize to contexts it hasn’t seen verbatim, because “similar” 
contexts map to related areas in the “embedding space”. 

• Massive datasets, but not combinatorial enumeration 
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o Modern LLMs are trained on massive corpora (often petabytes of data), 
which dwarf traditional n-gram datasets. 

o Rather than counting each n-gram, they learn to approximate the 
probability distribution over tokens via billions of parameters. They still 
need huge amounts of data, but their neural architecture lets them reuse 
and generalize patterns in ways that a straightforward n-gram model 
cannot. 

Advanced language models have outgrown the strict limitations of n-gram enumeration, 
but they are still, in essence, probabilistic text generators - just far more flexible and 
powerful. 

Let’s have a look at two key advancements of LLMs that produce such impressive 
language processing. 

Sub-word Tokenisation and Vocabulary Size 
Traditional word-level tokenization requires a massive vocabulary to cover every 
possible word in a language, resulting in extreme sparsity and inefficiency - especially 
when dealing with rare words or languages with complex morphology. Sub-word 
tokenization solves this by breaking words into smaller, reusable units. 

Using sub-word units like prefixes, suffixes, and roots drastically reduces the 
vocabulary size while retaining the ability to reconstruct any word. In traditional word-
level models, V can reach hundreds of thousands, especially for large corpora (we saw 
this in our Jeopardy dataset above). Yet, modern sub-word models (e.g.BERT, GPT-3), V 
is typically 30,000 to 50,000 tokens, despite being trained on datasets spanning trillions 
of words. 

Furthermore, the same set of sub-words can be used in related languages whereas 
whole word based LMs would have had separate vocabularies for each language. 

Hidden Multi-Dimensional Vectors 
At the heart of modern language models lies a fascinating concept: hidden multi-
dimensional vectors, commonly referred to as embeddings. These vectors are dense, 
high-dimensional numerical representations that encode the properties of tokens 
(words, sub-words, or characters) in a way that computers can process. They are 
central to how models like GPT-4, BERT, and others understand and generate text. 

We’ll explore these in a future post - just as a teaser, I’ll mention that GPT-3 represents 
each sub-word token as a 12,288-dimensional vector, that’s a lot of information for 
each token, of which there are 50,257. Imagine having a 2D array representing this 
embedding space… 
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float tokens[50257][12288]; 

 

…this is how PyTorch and TensorFlow implement the embedding table. 

Conclusion 
Higher-order n-gram models are a fascinating step in the evolution of language 
modelling, but they hit a wall pretty quickly. They crave data - massive amounts of it - 
and even then, they struggle with sparsity, which makes them feel a bit like a relic in the 
age of massive neural networks. Modern language models have sidestepped these 
problems with clever tricks like embeddings and sub-word tokenization, giving them the 
flexibility and power that n-grams could only dream of. While n-gram models remain a 
cornerstone in understanding the evolution of LMs, the advancements in neural 
networks demonstrate the power of innovation. But hey, n-grams still have their place - 
they’re simple, elegant, and surprisingly useful in the right context.  

Postscript - N-Grams Live On 
N-gram LMs are far from dead though: the Infini-gram model (Liu et al, 2024) represents 
a significant advancement by extending traditional n-gram models to handle 
unbounded n values, effectively creating an "∞-gram" model. There’s no pre-computing 
as that would be too onerous on the massive corpus they used - 5 trillion words! Instead 
suffix arrays are used (Manber & Myers, 1993) based on suffix trees (Weiner, 1973). This 
data structure allows for on-the-fly computation of n-gram probabilities with 
millisecond-level latency, even for massive datasets. 
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