
 Data Hunger: Why N-Gram Models Struggle with Sparsity (and What Modern LLMs Do Differently)

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 1 of 9

Data Hunger: Why N-Gram Models
Struggle with Sparsity (and What Modern
LLMs Do Differently)

TL;DR: Higher-order n-gram models struggle with the exponential data requirements
and sparsity issues of capturing language patterns, while modern LLMs overcome these
challenges with neural architectures, embeddings, and sub-word tokenization.

In this post, we will explore why traditional n-gram models hit a wall as they attempt to
use more context, delving into their insatiable appetite for data and the problems
caused by sparsity. We’ll also contrast these limitations with the breakthroughs of
modern large language models (LLMs), which have transformed how we approach
language modelling.

Introduction
Imagine you start building a language model with a simple approach: counting how
often certain words follow each other. You begin with something very basic - just look at
one word at a time (unigram), or maybe pairs of words (bigrams). With a modest amount
of text, you can create a model that occasionally produces semi-coherent short
fragments. Encouraged by this, you decide to add more context to improve coherence.
Instead of just looking at single words or pairs, what if you consider three words or four
words at a time?

In the last post, we did just that: we got up to trigrams (three-word sequences) to
demonstrate with very little code and a sample text of a million words that plausible
language can be generated.

Moving up to 4 or 5 words sounds like a natural step - more context should mean more
natural-sounding text, right? The catch is that as you increase the number of words in
your “window,” you also increase the complexity of your model. Suddenly, the amount
of data you need to avoid repetitive, looped, or nonsensical output skyrockets. Without
a massive amount of text, your new higher-order model might just keep repeating the
same phrases over and over, or struggle to find any valid next words at all.

In this post, we’ll explore why going beyond trigrams into tetragrams and beyond
requires exponentially more text, what happens when you don’t have enough data, and
how this connects to the broader world of advanced language models. By the end, you’ll

 Data Hunger: Why N-Gram Models Struggle with Sparsity (and What Modern LLMs Do Differently)

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 2 of 9

have a clearer picture of how the desire for richer local context leads straight into the
arms of ever-growing datasets.

A Quick Refresher on N-Grams
First introduced by Claude Channon in his highly influential paper, “A mathematical
theory of communication” (Shannon, 1948), n-grams are sequences of n consecutive
words (or tokens) extracted from text. For example, if n = 2, we talk about bigrams,
which are pairs of consecutive words like “natural language” or “machine learning.”
Similarly, if n = 3, we have trigrams, such as “large language models.”

In Natural Language Processing (NLP), n-grams are used to build simple statistical
models of language. By counting how often certain sequences of words appear, these
models can predict the next word in a sentence, generate text, or estimate how
“natural” a piece of text sounds. The basic idea is: if you know which words frequently
follow one another, you can guess the next word more accurately. This approach
doesn’t require any understanding of the text’s meaning; it’s purely based on patterns
observed in sample documents.

In natural language, even a very large text corpus can’t contain every possible word
sequence. Many n-grams will be rare or unseen (Jurafsky & Martin, 2024). A basic
frequency-based model would assign zero probability to these unseen n-grams, which
isn’t very practical. Smoothing techniques adjust the raw frequency counts so that the
model can assign a small, non-zero probability to unseen or rare n-grams, thus
improving generalization and overall model performance. Kneser-Ney smoothing
(Kneser & Ney, 1995) became a seminal advancement in how n-gram probabilities are
estimated, improving performance over more basic smoothing techniques and
becoming a standard baseline method in n-gram language modelling.

Data Requirements Grow Exponentially
When you move from bigrams to trigrams, and then to tetragrams and beyond, you’re
essentially increasing the “resolution” of your language model. Each additional word in
the context window doesn’t just add a little complexity, it multiplies the number of
possible sequences the model needs to keep track of.

Consider a simple example:

• Suppose you have a vocabulary of V unique words.

• A unigram model just counts how often each single word appears, so it deals
with V possible items.

 Data Hunger: Why N-Gram Models Struggle with Sparsity (and What Modern LLMs Do Differently)

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 3 of 9

• A bigram model considers pairs of words. In theory, there could be up to V × V =
V² possible bigrams.

• A trigram model looks at triplets, so that’s up to V³ possible trigrams.

In practice, the size of your vocabulary depends on your dataset and how you process it.
If you’re dealing with English text and apply some basic normalization (like lowercasing
and removing very rare words), you can still easily end up with tens of thousands of
unique words. For instance:

• Small, Curated Texts: A focused dataset (e.g., specific domain literature) might
have a few thousand unique words.

• General English Text (News, selective Wikipedia): It’s common to see 50,000 to
200,000 unique words, even after filtering out extremely rare terms.

• Large, Unfiltered Corpora: With large and diverse datasets (like the entirety of
Wikipedia or large web crawls), the raw vocabulary can reach into the millions,
including proper nouns, technical terms, and rare words. Many NLP practitioners
then apply methods to reduce or manage this vocabulary, such as using sub-
word tokenization.

In our previous post, we combined some classics into a single text file for our gentext.py
program to use. Let’s see how many unique lowercase words were contained in this
corpus of just over a million words overall:

11:31:31 User@AN20 ~/Demystifying LLMs 491 0 😊 $ tr '[:space:]' '\n' <
sample.txt | tr '[:upper:]' '[:lower:]' | sort -u | wc -l

69132

So gentext.py was working with V = 69,132 and we moved up to a trigram model making
a possible 330 trillion trigrams! Let’s see with our million-word corpus how many
trigrams were actually created – here’s the existing code with some print statements
added:

TRIGRAM MODEL (WORD-BASED)

trigram_counts = defaultdict(Counter)

for i in range(len(words)-2):

 pair = (words[i], words[i+1])

 next_word = words[i+2]

 trigram_counts[pair][next_word] += 1

Print some stats about the trigram model

 Data Hunger: Why N-Gram Models Struggle with Sparsity (and What Modern LLMs Do Differently)

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 4 of 9

num_unique_pairs = len(trigram_counts)

num_unique_trigrams = sum(len(cdict) for cdict in trigram_counts.values())

print("Trigram model stats:")

print(f"Number of unique word pairs (contexts): {num_unique_pairs}")

print(f"Number of unique trigrams (contexts + next word): {num_unique_trigrams}")

Running this gives us:

Trigram model stats:
Number of unique word pairs (contexts): 360680
Number of unique trigrams (contexts + next word): 792356

So nearly 800k trigrams from a million-word dataset may indicate richness and diversity
but it’s still very sparse compared to the full combinatorial space.

Let’s try a different dataset. We could use the set of over 200k Jeopardy questions and
answers. This is a 53MB JSON file that looks like this:

01:10:21 User@AN20 ~/DataHungerOfN-GramModels 421 130 😡 $ head -c 1350
JEOPARDY_QUESTIONS1.json

[{"category": "HISTORY", "air_date": "2004-12-31", "question": "'For the
last 8 years of his life, Galileo was under house arrest for espousing this
man's theory'", "value": "$200", "answer": "Copernicus", "round":
"Jeopardy!", "show_number": "4680"}, {"category": "ESPN's TOP 10 ALL-TIME
ATHLETES", "air_date": "2004-12-31", "question": "'No. 2: 1912 Olympian;
football star at Carlisle Indian School; 6 MLB seasons with the Reds, Giants
& Braves'", "value": "$200", "answer": "Jim Thorpe", "round": "Jeopardy!",
"show_number": "4680"}, {"category": "EVERYBODY TALKS ABOUT IT...",
"air_date": "2004-12-31", "question": "'The city of Yuma in this state has a
record average of 4,055 hours of sunshine each year'", "value": "$200",
"answer": "Arizona", "round": "Jeopardy!", "show_number": "4680"},
{"category": "THE COMPANY LINE", "air_date": "2004-12-31", "question": "'In
1963, live on \"The Art Linkletter Show\", this company served its billionth
burger'", "value": "$200", "answer": "McDonald\\'s", "round": "Jeopardy!",
"show_number": "4680"}, {"category": "EPITAPHS & TRIBUTES", "air_date":
"2004-12-31", "question": "'Signer of the Dec. of Indep., framer of the
Constitution of Mass., second President of the United States'", "value":
"$200", "answer": "John Adams", "round": "Jeopardy!", "show_number": "4680"},

It's all on one line and, being a JSON file, has some useful metadata. Let’s strip out only
the questions and answers using rather brilliant jq:

01:08:22 User@AN20 ~/DataHungerOfN-GramModels 302 0 😊 $ jq -r '.[] |
(.question, .answer)' JEOPARDY_QUESTIONS1.json > sample.txt

01:08:34 User@AN20 ~/DataHungerOfN-GramModels 314 0 😊 $ wc -w sample.txt
3572429 sample.txt

01:08:42 User@AN20 ~/DataHungerOfN-GramModels 322 0 😊 $ head sample.txt
'For the last 8 years of his life, Galileo was under house arrest for

espousing this man's theory'
Copernicus
'No. 2: 1912 Olympian; football star at Carlisle Indian School; 6 MLB

seasons with the Reds, Giants & Braves'
Jim Thorpe
'The city of Yuma in this state has a record average of 4,055 hours of

sunshine each year'
Arizona

https://drive.google.com/file/d/0BwT5wj_P7BKXb2hfM3d2RHU1ckE/view?resourcekey=0-1abK4cJq-mqxFoSg86ieIg
https://drive.google.com/file/d/0BwT5wj_P7BKXb2hfM3d2RHU1ckE/view?resourcekey=0-1abK4cJq-mqxFoSg86ieIg
https://jqlang.github.io/jq/

 Data Hunger: Why N-Gram Models Struggle with Sparsity (and What Modern LLMs Do Differently)

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 5 of 9

'In 1963, live on "The Art Linkletter Show", this company served its
billionth burger'

McDonald\'s
'Signer of the Dec. of Indep., framer of the Constitution of Mass., second

President of the United States'
John Adams

01:21:54 User@AN20 ~/DataHungerOfN-GramModels 114 0 😊 $ tr '[:space:]'
'\n' < sample.txt | tr '[:upper:]' '[:lower:]' | sort -u | wc -l

281792

OK, so we now have a 3.5m word count sample.txt with 281,792 unique words which
generate…

Trigram model stats:
Number of unique word pairs (contexts): 1273837
Number of unique trigrams (contexts + next word): 2508025

…2.5m trigrams.

Oh dear, this is even more sparse - V is much larger now and needs to be cubed but the
number of trigrams hasn’t increased by the same magnitude. Let’s put this into
numbers by defining sparsity and plugging in the values for the 2 modules:

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
𝑁𝑢𝑚 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑁𝐺𝑟𝑎𝑚𝑠 𝑜𝑓 𝑉𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑁𝐺𝑟𝑎𝑚𝑠 𝑜𝑓 𝑉𝑁

The sparsity value ranges between:

• 0 (no sparsity): Every possible n-gram has been observed.

• 1 (complete sparsity): None of the possible n-grams have been observed.

For dataset 1:

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
792356

691323
= 1 −

792356

3.3 × 1014
≅ 1 − 2.4 × 109 ≈ 1

The sparsity is extremely close to 1, meaning only an infinitesimal fraction of all possible
trigrams has been observed. And for dataset 2:

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
2508025

2817923
= 1 −

2508025

2.24 × 1016
≅ 1 − 1.12 × 1010 ≈ 1

Again, the sparsity is overwhelmingly close to 1, even though the dataset is larger and
captures more trigrams.

Hitting the Limits With Small Datasets
We saw above how data sparsity rears its head because the model needs enough
examples of each n-gram to accurately estimate probabilities. With high sparsity, we
would get dead ends, repetitive loops and overfitting.

 Data Hunger: Why N-Gram Models Struggle with Sparsity (and What Modern LLMs Do Differently)

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 6 of 9

These issues highlight why early statistical approaches often stopped at trigrams. As
soon as you push to tetragrams or more, the data demands skyrocket further, and small
to moderate datasets can’t keep up. This becomes a hard practical limit, showing why
either much larger corpora or more advanced modelling techniques (like smoothing, or
ultimately, neural networks) are essential for better language modelling.

As an example of a large dataset, Google’s “Web 1T 5-gram” model is an impressive pre-
computed n-gram model with the following stats (Franz & Brants 2006):

Tokens 1,024,908,267,229

Sentences 95,119,665,584

Unigrams 13,588,391

Bigrams 314,843,401

Trigrams 977,069,902

Fourgrams 1,313,818,354

Fivegrams 1,176,470,663

Without even doing the calculations, I think it is obvious that even this has the sparsity
problem - simply because the vocabulary size (approximately the same as the count of
unigrams depending on tokenization) is so large at over 13m, despite generating 977m
trigrams from the 1 trillion source!

Comparisons to Advanced Language Models
While higher-order n-gram models illuminate the exponential data requirements for
capturing language patterns, modern large language models (LLMs) have taken a
different route. Instead of explicitly enumerating all possible n-gram sequences, they
leverage neural network architectures (e.g., Transformers) that learn continuous
representations of words and context. This approach provides several advantages:

• Continuous embeddings vs. discrete N-Grams

o In an n-gram model, each word is a discrete unit, and we track exact
counts of sequences. This can quickly become sparse as n grows.

o By contrast, LLMs embed words (or more often, sub-word tokens) into
high-dimensional vectors. Similar words or phrases end up close to each
other in this continuous space, reducing the sparsity problem. The model
can generalize to contexts it hasn’t seen verbatim, because “similar”
contexts map to related areas in the “embedding space”.

• Massive datasets, but not combinatorial enumeration

 Data Hunger: Why N-Gram Models Struggle with Sparsity (and What Modern LLMs Do Differently)

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 7 of 9

o Modern LLMs are trained on massive corpora (often petabytes of data),
which dwarf traditional n-gram datasets.

o Rather than counting each n-gram, they learn to approximate the
probability distribution over tokens via billions of parameters. They still
need huge amounts of data, but their neural architecture lets them reuse
and generalize patterns in ways that a straightforward n-gram model
cannot.

Advanced language models have outgrown the strict limitations of n-gram enumeration,
but they are still, in essence, probabilistic text generators - just far more flexible and
powerful.

Let’s have a look at two key advancements of LLMs that produce such impressive
language processing.

Sub-word Tokenisation and Vocabulary Size
Traditional word-level tokenization requires a massive vocabulary to cover every
possible word in a language, resulting in extreme sparsity and inefficiency - especially
when dealing with rare words or languages with complex morphology. Sub-word
tokenization solves this by breaking words into smaller, reusable units.

Using sub-word units like prefixes, suffixes, and roots drastically reduces the
vocabulary size while retaining the ability to reconstruct any word. In traditional word-
level models, V can reach hundreds of thousands, especially for large corpora (we saw
this in our Jeopardy dataset above). Yet, modern sub-word models (e.g.BERT, GPT-3), V
is typically 30,000 to 50,000 tokens, despite being trained on datasets spanning trillions
of words.

Furthermore, the same set of sub-words can be used in related languages whereas
whole word based LMs would have had separate vocabularies for each language.

Hidden Multi-Dimensional Vectors
At the heart of modern language models lies a fascinating concept: hidden multi-
dimensional vectors, commonly referred to as embeddings. These vectors are dense,
high-dimensional numerical representations that encode the properties of tokens
(words, sub-words, or characters) in a way that computers can process. They are
central to how models like GPT-4, BERT, and others understand and generate text.

We’ll explore these in a future post - just as a teaser, I’ll mention that GPT-3 represents
each sub-word token as a 12,288-dimensional vector, that’s a lot of information for
each token, of which there are 50,257. Imagine having a 2D array representing this
embedding space…

 Data Hunger: Why N-Gram Models Struggle with Sparsity (and What Modern LLMs Do Differently)

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 8 of 9

float tokens[50257][12288];

…this is how PyTorch and TensorFlow implement the embedding table.

Conclusion
Higher-order n-gram models are a fascinating step in the evolution of language
modelling, but they hit a wall pretty quickly. They crave data - massive amounts of it -
and even then, they struggle with sparsity, which makes them feel a bit like a relic in the
age of massive neural networks. Modern language models have sidestepped these
problems with clever tricks like embeddings and sub-word tokenization, giving them the
flexibility and power that n-grams could only dream of. While n-gram models remain a
cornerstone in understanding the evolution of LMs, the advancements in neural
networks demonstrate the power of innovation. But hey, n-grams still have their place -
they’re simple, elegant, and surprisingly useful in the right context.

Postscript - N-Grams Live On
N-gram LMs are far from dead though: the Infini-gram model (Liu et al, 2024) represents
a significant advancement by extending traditional n-gram models to handle
unbounded n values, effectively creating an "∞-gram" model. There’s no pre-computing
as that would be too onerous on the massive corpus they used - 5 trillion words! Instead
suffix arrays are used (Manber & Myers, 1993) based on suffix trees (Weiner, 1973). This
data structure allows for on-the-fly computation of n-gram probabilities with
millisecond-level latency, even for massive datasets.

References
Brantz, T., & Franz, A. (2006). The google web 1T 5-gram corpus. Linguistic Data Consortium. UPenn
This corpus was a groundbreaking resource in language modelling, providing a massive dataset of n-
grams that enabled researchers to explore higher-order models on an unprecedented scale.

Jurafsky, Daniel and Martin, James H. (2024). “Chapter 3: N-gram Language Models”. “Speech and
Language Processing: An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition with Language Models”, 3rd edition. Stanford
This chapter is a foundational introduction to n-gram models and their role in computational linguistics. It
succinctly explains the concepts of smoothing, sparsity, and practical limitations, making it an essential
resource for anyone studying or working in NLP.

Liu, J., Min, S., Zettlemoyer, L., Choi, Y., & Hajishirzi, H. (2024). Infini-gram: Scaling unbounded n-
gram language models to a trillion tokens. arXiv preprint arXiv:2401.17377. arXiv
This work pushes the boundaries of traditional n-gram models, demonstrating how innovative data
structures and algorithms can scale to unprecedented levels. It showcases the continued relevance of n-
grams in the era of neural models and offers insights into bridging classic and modern approaches.

https://catalog.ldc.upenn.edu/LDC2006T13
https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://arxiv.org/abs/2401.17377

 Data Hunger: Why N-Gram Models Struggle with Sparsity (and What Modern LLMs Do Differently)

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 9 of 9

Manber, U., & Myers, G. (1993). Suffix arrays: a new method for on-line string searches. siam Journal
on Computing, 22(5), 935-948. Max Planck Society
The introduction of suffix arrays was a major milestone in computational string processing. This efficient
data structure is widely used in NLP tasks, from n-gram modeling to modern text indexing and retrieval,
demonstrating its enduring versatility and impact.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal,
27(3), 379-423. Max Planck Society
Shannon's paper laid the theoretical groundwork for information theory and language modeling. His
introduction of the n-gram concept and probabilistic frameworks continues to influence how we
understand and model language and information processing.

Weiner, P. (1973, October). Linear pattern matching algorithms. In 14th Annual Symposium on
Switching and Automata Theory (swat 1973) (pp. 1-11). IEEE. Yale
Weiner's work on suffix trees provided an efficient way to manage and search large datasets, which has
been instrumental in text processing, indexing, and n-gram computation. It remains a cornerstone of
algorithms used in computational linguistics and beyond.

https://publications.mpi-cbg.de/Manber_1993_5474.pdf
https://pure.mpg.de/rest/items/item_2383164/component/file_2383163/content
https://cpsc.yale.edu/sites/default/files/files/technical-reports/TR17%20Linear%20Pattern%20Matching%20ALgorithms.pdf

	Introduction
	A Quick Refresher on N-Grams
	Data Requirements Grow Exponentially
	Hitting the Limits With Small Datasets
	Comparisons to Advanced Language Models
	Sub-word Tokenisation and Vocabulary Size
	Hidden Multi-Dimensional Vectors

	Conclusion
	Postscript - N-Grams Live On
	References

