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Demystifying LLMs With Some Simple 
Python 
 
TL;DR: Large Language Models (LLMs) like Gemini or ChatGPT seem to “understand” 
our questions and “reason” out their answers. In reality, they don’t have any inherent 
understanding. They predict the next word by leveraging complex statistical 
associations learned from vast amounts of text. 

 
In this post, we’ll build a toy model that mimics some of these statistical approaches – 
without any machine learning – just counting letter and word frequencies. We’ll see how 
even these simple methods can generate text that looks somewhat plausible. Our goal 
is to highlight that behind the slick, human-like output lies a system that’s 
fundamentally based on statistical pattern prediction, not genuine reasoning. 

Introduction 
Modern LLMs are marvels of contemporary artificial intelligence, trained on trillions of 
words to produce eerily human-like text. But what does “understanding” mean here? At 
their core, these models: 

1. Look at the text input (prompt). 

2. Use learned statistical patterns to predict what’s the most likely next word (or 
token). 

3. Continue doing so repeatedly to form what appears to be a coherent response. 

They do not have a mind’s eye picturing the scenario, nor a grounded understanding of 
what they’re talking about. Even when they solve complex tasks, what they’re really 
doing is pattern-matching based on pre-ingested data. 

To illustrate this, let’s start from scratch and build a simple statistical generator. We’ll 
use a fairly small (by LM standards) set of text as our “training data” and generate text 
using progressively more complex patterns - from single-letter probabilities to word-
level predictions. 

1: Data Preparation and Loading 
First, we need a source text. Maybe download some Wikipedia articles or delve into the 
Project Gutenberg archive and store locally as sample.txt - here’s my one cleaned up to 
remove the boilerplate text at the start and end of each file: 
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08:18:47 User@AN20 ~/Demystifying LLMs 127 0       $ wc -w in/* 
  64229 in/Bridgman - The logic of modern physics.txt 
  79751 in/Engels - Anti-Duehring.txt 
 121981 in/Hegel - Philosophy of Mind.txt 
  86847 in/Kafka - The Trial.txt 
 113967 in/Nietzsche - Thus Spake Zarathustra.txt 
  41172 in/Russell - The Practice and Theory of Bolshevism.txt 
 566328 in/Tolstoy - War and Peace.txt 
1074275 total 

08:18:50 User@AN20 ~/Demystifying LLMs 130 0       $ > sample.txt && for file 
in in/*.txt; do sed -n '/\\*\\*\\* START OF THE PROJECT GUTENBERG 
EBOOK/,/\\*\\*\\* END OF THE PROJECT GUTENBERG EBOOK/{//!p}' "$file" >> 
sample.txt; done 

08:18:53 User@AN20 ~/Demystifying LLMs 133 0       $ wc -w sample.txt 
1052840 sample.txt 
 

(I wanted about a million words so combined several classics). 

Point the code below to where you have your sample.txt. Make sure your chosen sample 
text is plain text without any markup. 

 

with open('sample.txt', 'r', encoding='utf-8') as f: 

    text = f.read().lower() 

 

# Basic cleaning: only keep letters and spaces 

text = re.sub(r'[^a-z\s]', '', text) 

text = re.sub(r'\s+', ' ', text).strip() 

 

2: Simple Letter Frequency 
Let’s start at the simplest possible level. We’ll count how often each letter appears and 
then generate text by sampling letters according to their overall frequency. This will 
produce complete gibberish - just a jumble of letters. But it illustrates a key point: if we 
randomly choose letters based on how common they are, we’ll reproduce the 
“statistical fingerprint” of the language at a letter level, but no meaningful words. 

 

letters = [ch for ch in text if ch.isalpha()] 

letter_counts = Counter(letters) 

total_letters = sum(letter_counts.values()) 

 

def sample_letter(): 

    r = random.randint(1, total_letters) 

    cumulative = 0 

    for l, c in letter_counts.items(): 

        cumulative += c 

        if cumulative >= r: 

            return l 
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print("Random letters (simple frequency):") 

print(''.join(sample_letter() for _ in range(50))) 

print() 

 

 
Here’s what we get: 

 

Random letters (simple frequency): 

hronemnlsargnsrhdeihzeoeselagneshahemilnarcnteveiu 

 

3: Predicting the Next Letter 
Next, we introduce a small bit of structure; given a letter, we’ll guess what the next letter 
is likely to be. To do this, we’ll build a Markov chain, of sorts, counting how often each 
letter follows another letter. This will start to produce letter combinations that are more 
common in English - like “th” or “an” - and reduce nonsense like “zxq”. 

 

# Build letter -> next-letter counts 

letter_follow_counts = defaultdict(Counter) 

for i in range(len(letters)-1): 

    current_letter = letters[i] 

    next_letter = letters[i+1] 

    letter_follow_counts[current_letter][next_letter] += 1 

 

def sample_next_letter(prev_letter): 

    if prev_letter not in letter_follow_counts or 

len(letter_follow_counts[prev_letter]) == 0: 

        # fallback 

        return random.choice(list(letter_counts.keys())) 

    cdict = letter_follow_counts[prev_letter] 

    total = sum(cdict.values()) 

    r = random.randint(1, total) 

    cumulative = 0 

    for l, cnt in cdict.items(): 

        cumulative += cnt 

        if cumulative >= r: 

            return l 

 

current = random.choice(letters) 

generated_letters = [current] 

for _ in range(50): 
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    current = sample_next_letter(current) 

    generated_letters.append(current) 

 

print("Letter-based Markov chain text:") 

print(''.join(generated_letters)) 

print() 

 

 
You might start seeing more plausible letter pairings like the, ent, ion. Still, we’re likely to 
get nonsense, but at least it “feels” more language-like at the letter level: 

 

Letter-based Markov chain text: 

allethithindeertwhoutitheyberesforsineointogewisofa 

 

4: Building Up to Words 
Letters alone are too low-level. What if we move to words? Let’s split our text into words 
and count their frequencies. We’ll do something similar: start by just sampling words at 
random based on frequency. This will produce a list of common words (like “the”, “and”, 
“of”, “to”) but in a random order - no cohesion at all. 

 

words = text.split() 

word_counts = Counter(words) 

total_words = sum(word_counts.values()) 

 

def sample_word(): 

    r = random.randint(1, total_words) 

    cumulative = 0 

    for w, c in word_counts.items(): 

        cumulative += c 

        if cumulative >= r: 

            return w 

 

print("Random words (simple frequency):") 

print(' '.join(sample_word() for _ in range(sentence_length))) 

print() 

 

 
This will be repetitive and likely full of common English filler words, depending on the 
input source text of course, but no grammatical sense: 

 

Random words (simple frequency): 
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there the evening surprise that as one i here polish with you the out days 

thousand who then the book 

 

5: Word-Level Markov Chains 
Let’s now build a Markov model at the word level. We’ll count which words tend to 
follow other words. This will start to produce text that, while still nonsensical, may form 
short recognizable phrases. For example, it might consistently place “of” after “part”. 

 

word_follow_counts = defaultdict(Counter) 

for i in range(len(words)-1): 

    current_word = words[i] 

    next_word = words[i+1] 

    word_follow_counts[current_word][next_word] += 1 

 

def sample_next_word(prev_word): 

    if prev_word not in word_follow_counts or len(word_follow_counts[prev_word]) 

== 0: 

        return random.choice(list(word_counts.keys())) 

    cdict = word_follow_counts[prev_word] 

    total = sum(cdict.values()) 

    r = random.randint(1, total) 

    cumulative = 0 

    for w, cnt in cdict.items(): 

        cumulative += cnt 

        if cumulative >= r: 

            return w 

 

current = random.choice(words) 

generated_sentence = [current] 

for _ in range(sentence_length - 1): 

    current = sample_next_word(current) 

    generated_sentence.append(current) 

 

print("Word-based Markov chain sentence:") 

print(' '.join(generated_sentence)) 

print() 

 

 
We might start to get longer, more coherent phrases: 

 

Word-based Markov chain sentence: 
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thy poisons political and involuntarily came every man was right to find a 

populace type they want to know they said 

 

6: Extending the Context 
To improve coherence further, we could look at n-grams: pairs or triplets of previous 
words instead of just one. For example, if we consider two words as context, we might 
get more stable phrases. Increasing the “order” of the Markov chain will produce more 
locally coherent text, but still no real meaning. 

 

trigram_counts = defaultdict(Counter) 

for i in range(len(words)-2): 

    pair = (words[i], words[i+1]) 

    next_word = words[i+2] 

    trigram_counts[pair][next_word] += 1 

 

def sample_trigram_word(prev_two_words): 

    if prev_two_words not in trigram_counts or len(trigram_counts[prev_two_words]) 

== 0: 

        return random.choice(list(word_counts.keys())) 

    cdict = trigram_counts[prev_two_words] 

    total = sum(cdict.values()) 

    r = random.randint(1, total) 

    cumulative = 0 

    for w, cnt in cdict.items(): 

        cumulative += cnt 

        if cumulative >= r: 

            return w 

 

start_index = random.randint(0, len(words)-3) 

current_pair = (words[start_index], words[start_index+1]) 

generated_trigram_sentence = list(current_pair) 

for _ in range(sentence_length - 2): 

    next_w = sample_trigram_word(current_pair) 

    generated_trigram_sentence.append(next_w) 

    current_pair = (current_pair[1], next_w) 

 

print("Trigram-based sentence:") 

print(' '.join(generated_trigram_sentence)) 
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This should produce more structured phrases, maybe something that almost looks like 
part of a legible sentence, but still often nonsensical or stuck in loops: 

 

08:31:36 User@AN20 ~/Demystifying LLMs 896 0       $ time python gentext.py 30 
Random letters (simple frequency): 
halgstwtsrmtlsaeitsyeeaenaeshahfnrgeriudrarpoiktit 
 
Letter-based Markov chain text: 
ypffrmpadolkndswhereerevllebeanlagosumattoursustind 
 
Random words (simple frequency): 
it then the eagerly in leaving in why will he on the those oftener at back 

that now else does flattered would 
power at the hill smoking virtues been the 
 
Word-based Markov chain sentence: 
and see the waist a game to reply we shall help you laugh at all too many 

years then dispersed to him of selfish isolation as possible he checked 
whether 

 
Trigram-based sentence: 
maid of honor he asked pointing upwards with his involuntary grin caused by 

englands intrigues to thank the old communal lands of the people it was 
becoming more and more 

 
real    0m7.241s 
user    0m0.000s 
sys     0m0.000s 
 

 

This isn’t too dissimilar to your mobile phone’s autocomplete if you keep selecting the 
first suggested word. 

 

Key Takeaway 
All these steps rely purely on counts of what follows what. There’s no “understanding” 
or “reasoning” going on. Our toy model is extremely simplistic compared to a modern 
LLM, which uses: 

• Massive training data: Trillions of words instead of a few paragraphs. 

• Complex tokenization: Instead of just letters or words, sub-word tokens and 
embeddings are used. 

• Neural networks: Transformers are essentially sophisticated pattern-recognition 
statistical models. They use “attention” to focus on certain parts of the text more 
than others, enabling them to capture context and produce more coherent 
predictions. 
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• Fine-tuning and RLHF (Reinforcement Learning from Human Feedback): Aligning 
model output with human preferences. With a lot of work having been done by 
low paid workers in the Global South. 

Yet, the fundamental principle is the same: these models find statistical patterns and 
use them to predict the next token. The illusion of reasoning emerges from the 
complexity and scale of these statistical patterns. When you have enough data and a 
sufficiently powerful model, you get text that’s not just plausible at a local level (like 
bigrams or trigrams) but globally coherent and contextually appropriate. But remember: 
no matter how real it feels, there’s no entity “thinking” behind the text. There’s just a 
probability machine, trained at a massive scale. 

LLM’s can use language form extremely well but not language meaning (Bender & 
Koller, 2020) - the following diagrams illustrate this point: 

 

 

(image courtesy of Real Grammar, 2021) 

 



 Demystifying LLMs With Some Simple Python   

 

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 9 of 10 

 

 

Conclusion 
We started with a toy model that generates text from pure frequency counts at the letter 
level and progressed to a simple Markov chain at the word (and n-gram) level. Even with 
these simple approaches, we can generate superficially “language-like” text. The gap 
between our toy and a modern LLM is huge, but the core principle is similar. 

LLMs are useful tools – they can assist in coding, writing, and more. But it’s important to 
remember what they are: stochastic parrots, not thinking agents with beliefs, or 
understanding. The “intelligence” we perceive is an emergent property of patterns and 
scale. 

In short: LLMs cannot reason in the human sense - they just generate text that is 
statistically likely. Our simple code demo demystifies them by showing how far you can 
get just by counting occurrences and probabilities. The difference between our naive 
system and a commercial LLM is not a change in fundamental principle, but in 
complexity, scale, and optimization. 
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Code 
Here’s the full python script: gentext.py 

 

https://research.google/pubs/bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding/
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2020.acl-main.463.pdf
https://arxiv.org/abs/2305.19555?utm_source=chatgpt.com
https://magazine.scienceforthepeople.org/vol24-2-dont-be-evil/stochastic-parrots/?utm_source=chatgpt.com
https://gupea.ub.gu.se/handle/2077/83731?utm_source=chatgpt.com
https://cse.buffalo.edu/~rapaport/Papers/Papers.by.Others/Searle/searle80-MindsBrainsProgs-BBS.pdf
file:///C:/Users/User/OneDrive/Documents/Anante.com/blog/Demystifying%20LLMs/gentext.py
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