
 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 1 of 10

Demystifying LLMs With Some Simple
Python

TL;DR: Large Language Models (LLMs) like Gemini or ChatGPT seem to “understand”
our questions and “reason” out their answers. In reality, they don’t have any inherent
understanding. They predict the next word by leveraging complex statistical
associations learned from vast amounts of text.

In this post, we’ll build a toy model that mimics some of these statistical approaches –
without any machine learning – just counting letter and word frequencies. We’ll see how
even these simple methods can generate text that looks somewhat plausible. Our goal
is to highlight that behind the slick, human-like output lies a system that’s
fundamentally based on statistical pattern prediction, not genuine reasoning.

Introduction
Modern LLMs are marvels of contemporary artificial intelligence, trained on trillions of
words to produce eerily human-like text. But what does “understanding” mean here? At
their core, these models:

1. Look at the text input (prompt).

2. Use learned statistical patterns to predict what’s the most likely next word (or
token).

3. Continue doing so repeatedly to form what appears to be a coherent response.

They do not have a mind’s eye picturing the scenario, nor a grounded understanding of
what they’re talking about. Even when they solve complex tasks, what they’re really
doing is pattern-matching based on pre-ingested data.

To illustrate this, let’s start from scratch and build a simple statistical generator. We’ll
use a fairly small (by LM standards) set of text as our “training data” and generate text
using progressively more complex patterns - from single-letter probabilities to word-
level predictions.

1: Data Preparation and Loading
First, we need a source text. Maybe download some Wikipedia articles or delve into the
Project Gutenberg archive and store locally as sample.txt - here’s my one cleaned up to
remove the boilerplate text at the start and end of each file:

 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 2 of 10

08:18:47 User@AN20 ~/Demystifying LLMs 127 0 $ wc -w in/*
 64229 in/Bridgman - The logic of modern physics.txt
 79751 in/Engels - Anti-Duehring.txt
 121981 in/Hegel - Philosophy of Mind.txt
 86847 in/Kafka - The Trial.txt
 113967 in/Nietzsche - Thus Spake Zarathustra.txt
 41172 in/Russell - The Practice and Theory of Bolshevism.txt
 566328 in/Tolstoy - War and Peace.txt
1074275 total

08:18:50 User@AN20 ~/Demystifying LLMs 130 0 $ > sample.txt && for file
in in/*.txt; do sed -n '/*** START OF THE PROJECT GUTENBERG
EBOOK/,/*** END OF THE PROJECT GUTENBERG EBOOK/{//!p}' "$file" >>
sample.txt; done

08:18:53 User@AN20 ~/Demystifying LLMs 133 0 $ wc -w sample.txt
1052840 sample.txt

(I wanted about a million words so combined several classics).

Point the code below to where you have your sample.txt. Make sure your chosen sample
text is plain text without any markup.

with open('sample.txt', 'r', encoding='utf-8') as f:

 text = f.read().lower()

Basic cleaning: only keep letters and spaces

text = re.sub(r'[^a-z\s]', '', text)

text = re.sub(r'\s+', ' ', text).strip()

2: Simple Letter Frequency
Let’s start at the simplest possible level. We’ll count how often each letter appears and
then generate text by sampling letters according to their overall frequency. This will
produce complete gibberish - just a jumble of letters. But it illustrates a key point: if we
randomly choose letters based on how common they are, we’ll reproduce the
“statistical fingerprint” of the language at a letter level, but no meaningful words.

letters = [ch for ch in text if ch.isalpha()]

letter_counts = Counter(letters)

total_letters = sum(letter_counts.values())

def sample_letter():

 r = random.randint(1, total_letters)

 cumulative = 0

 for l, c in letter_counts.items():

 cumulative += c

 if cumulative >= r:

 return l

 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 3 of 10

print("Random letters (simple frequency):")

print(''.join(sample_letter() for _ in range(50)))

print()

Here’s what we get:

Random letters (simple frequency):

hronemnlsargnsrhdeihzeoeselagneshahemilnarcnteveiu

3: Predicting the Next Letter
Next, we introduce a small bit of structure; given a letter, we’ll guess what the next letter
is likely to be. To do this, we’ll build a Markov chain, of sorts, counting how often each
letter follows another letter. This will start to produce letter combinations that are more
common in English - like “th” or “an” - and reduce nonsense like “zxq”.

Build letter -> next-letter counts

letter_follow_counts = defaultdict(Counter)

for i in range(len(letters)-1):

 current_letter = letters[i]

 next_letter = letters[i+1]

 letter_follow_counts[current_letter][next_letter] += 1

def sample_next_letter(prev_letter):

 if prev_letter not in letter_follow_counts or

len(letter_follow_counts[prev_letter]) == 0:

 # fallback

 return random.choice(list(letter_counts.keys()))

 cdict = letter_follow_counts[prev_letter]

 total = sum(cdict.values())

 r = random.randint(1, total)

 cumulative = 0

 for l, cnt in cdict.items():

 cumulative += cnt

 if cumulative >= r:

 return l

current = random.choice(letters)

generated_letters = [current]

for _ in range(50):

 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 4 of 10

 current = sample_next_letter(current)

 generated_letters.append(current)

print("Letter-based Markov chain text:")

print(''.join(generated_letters))

print()

You might start seeing more plausible letter pairings like the, ent, ion. Still, we’re likely to
get nonsense, but at least it “feels” more language-like at the letter level:

Letter-based Markov chain text:

allethithindeertwhoutitheyberesforsineointogewisofa

4: Building Up to Words
Letters alone are too low-level. What if we move to words? Let’s split our text into words
and count their frequencies. We’ll do something similar: start by just sampling words at
random based on frequency. This will produce a list of common words (like “the”, “and”,
“of”, “to”) but in a random order - no cohesion at all.

words = text.split()

word_counts = Counter(words)

total_words = sum(word_counts.values())

def sample_word():

 r = random.randint(1, total_words)

 cumulative = 0

 for w, c in word_counts.items():

 cumulative += c

 if cumulative >= r:

 return w

print("Random words (simple frequency):")

print(' '.join(sample_word() for _ in range(sentence_length)))

print()

This will be repetitive and likely full of common English filler words, depending on the
input source text of course, but no grammatical sense:

Random words (simple frequency):

 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 5 of 10

there the evening surprise that as one i here polish with you the out days

thousand who then the book

5: Word-Level Markov Chains
Let’s now build a Markov model at the word level. We’ll count which words tend to
follow other words. This will start to produce text that, while still nonsensical, may form
short recognizable phrases. For example, it might consistently place “of” after “part”.

word_follow_counts = defaultdict(Counter)

for i in range(len(words)-1):

 current_word = words[i]

 next_word = words[i+1]

 word_follow_counts[current_word][next_word] += 1

def sample_next_word(prev_word):

 if prev_word not in word_follow_counts or len(word_follow_counts[prev_word])

== 0:

 return random.choice(list(word_counts.keys()))

 cdict = word_follow_counts[prev_word]

 total = sum(cdict.values())

 r = random.randint(1, total)

 cumulative = 0

 for w, cnt in cdict.items():

 cumulative += cnt

 if cumulative >= r:

 return w

current = random.choice(words)

generated_sentence = [current]

for _ in range(sentence_length - 1):

 current = sample_next_word(current)

 generated_sentence.append(current)

print("Word-based Markov chain sentence:")

print(' '.join(generated_sentence))

print()

We might start to get longer, more coherent phrases:

Word-based Markov chain sentence:

 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 6 of 10

thy poisons political and involuntarily came every man was right to find a

populace type they want to know they said

6: Extending the Context
To improve coherence further, we could look at n-grams: pairs or triplets of previous
words instead of just one. For example, if we consider two words as context, we might
get more stable phrases. Increasing the “order” of the Markov chain will produce more
locally coherent text, but still no real meaning.

trigram_counts = defaultdict(Counter)

for i in range(len(words)-2):

 pair = (words[i], words[i+1])

 next_word = words[i+2]

 trigram_counts[pair][next_word] += 1

def sample_trigram_word(prev_two_words):

 if prev_two_words not in trigram_counts or len(trigram_counts[prev_two_words])

== 0:

 return random.choice(list(word_counts.keys()))

 cdict = trigram_counts[prev_two_words]

 total = sum(cdict.values())

 r = random.randint(1, total)

 cumulative = 0

 for w, cnt in cdict.items():

 cumulative += cnt

 if cumulative >= r:

 return w

start_index = random.randint(0, len(words)-3)

current_pair = (words[start_index], words[start_index+1])

generated_trigram_sentence = list(current_pair)

for _ in range(sentence_length - 2):

 next_w = sample_trigram_word(current_pair)

 generated_trigram_sentence.append(next_w)

 current_pair = (current_pair[1], next_w)

print("Trigram-based sentence:")

print(' '.join(generated_trigram_sentence))

 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 7 of 10

This should produce more structured phrases, maybe something that almost looks like
part of a legible sentence, but still often nonsensical or stuck in loops:

08:31:36 User@AN20 ~/Demystifying LLMs 896 0 $ time python gentext.py 30
Random letters (simple frequency):
halgstwtsrmtlsaeitsyeeaenaeshahfnrgeriudrarpoiktit

Letter-based Markov chain text:
ypffrmpadolkndswhereerevllebeanlagosumattoursustind

Random words (simple frequency):
it then the eagerly in leaving in why will he on the those oftener at back

that now else does flattered would
power at the hill smoking virtues been the

Word-based Markov chain sentence:
and see the waist a game to reply we shall help you laugh at all too many

years then dispersed to him of selfish isolation as possible he checked
whether

Trigram-based sentence:
maid of honor he asked pointing upwards with his involuntary grin caused by

englands intrigues to thank the old communal lands of the people it was
becoming more and more

real 0m7.241s
user 0m0.000s
sys 0m0.000s

This isn’t too dissimilar to your mobile phone’s autocomplete if you keep selecting the
first suggested word.

Key Takeaway
All these steps rely purely on counts of what follows what. There’s no “understanding”
or “reasoning” going on. Our toy model is extremely simplistic compared to a modern
LLM, which uses:

• Massive training data: Trillions of words instead of a few paragraphs.

• Complex tokenization: Instead of just letters or words, sub-word tokens and
embeddings are used.

• Neural networks: Transformers are essentially sophisticated pattern-recognition
statistical models. They use “attention” to focus on certain parts of the text more
than others, enabling them to capture context and produce more coherent
predictions.

 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 8 of 10

• Fine-tuning and RLHF (Reinforcement Learning from Human Feedback): Aligning
model output with human preferences. With a lot of work having been done by
low paid workers in the Global South.

Yet, the fundamental principle is the same: these models find statistical patterns and
use them to predict the next token. The illusion of reasoning emerges from the
complexity and scale of these statistical patterns. When you have enough data and a
sufficiently powerful model, you get text that’s not just plausible at a local level (like
bigrams or trigrams) but globally coherent and contextually appropriate. But remember:
no matter how real it feels, there’s no entity “thinking” behind the text. There’s just a
probability machine, trained at a massive scale.

LLM’s can use language form extremely well but not language meaning (Bender &
Koller, 2020) - the following diagrams illustrate this point:

(image courtesy of Real Grammar, 2021)

 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 9 of 10

Conclusion
We started with a toy model that generates text from pure frequency counts at the letter
level and progressed to a simple Markov chain at the word (and n-gram) level. Even with
these simple approaches, we can generate superficially “language-like” text. The gap
between our toy and a modern LLM is huge, but the core principle is similar.

LLMs are useful tools – they can assist in coding, writing, and more. But it’s important to
remember what they are: stochastic parrots, not thinking agents with beliefs, or
understanding. The “intelligence” we perceive is an emergent property of patterns and
scale.

In short: LLMs cannot reason in the human sense - they just generate text that is
statistically likely. Our simple code demo demystifies them by showing how far you can
get just by counting occurrences and probabilities. The difference between our naive
system and a commercial LLM is not a change in fundamental principle, but in
complexity, scale, and optimization.

References
The term "stochastic parrot" was introduced in the excellent 2021 paper "On the Dangers of Stochastic
Parrots: Can Language Models Be Too Big?" by Emily M. Bender, Timnit Gebru, Angelina McMillan-Major,
and Margaret Mitchell. This seminal work critiques large language models (LLMs), highlighting concerns
about their scalability, environmental impact, and inherent biases. ACM Digital Library

https://dl.acm.org/doi/epdf/10.1145/3442188.3445922?utm_source=chatgpt.com

 Demystifying LLMs With Some Simple Python

Copyright © Anante Ltd. (2024). Share with attribution/citation. Page 10 of 10

The main author had previously co-authored another influential paper, “Climbing towards NLU: On
Meaning, Form, and Understanding in the Age of Data" (Emily M. Bender, Alexander Koller, ACL 2020). The
authors distinguish between form (surface patterns in text) and meaning (the underlying concepts and
relationships). They argue that current language models (from BERT to GPT3) learn form-based
correlations and do not achieve what we would call true “understanding” or reasoning – only pattern
recognition that gives an illusion of comprehension. ACL Anthology

"Large Language Models Are Not Strong Abstract Reasoners" (Gendron et al, 2023) evaluates LLMs on
abstract reasoning tasks, revealing that despite their proficiency in various NLP tasks, LLMs exhibit very
limited performance in abstract reasoning. ARXIV

The article "Stochastic Parrots: How NLP Research Has Gotten Too Big" (Esther Sánchez García and
Michael Gasser, 2021) discusses the implications of large-scale natural language processing research,
emphasizing the potential risks and ethical considerations associated with developing and deploying
extensive language models. Science for the People Magazine

For a comprehensive analysis of LLMs, Felix Morger's 2024 thesis, "In the Minds of Stochastic Parrots:
Benchmarking, Evaluating and Interpreting Large Language Models", delves into the evaluation and
interpretation of these models, providing insights into their capabilities and limitations. GUPA

And of course, no critique of AI would be complete without citing John Searle’s Chinese Room
Argument. Presented in 1980, Searle critiques the notion of "strong AI" - the idea that computers can
genuinely understand and think like humans. He argues that while machines manipulate symbols using
pre-defined or learned rules, they lack true understanding or consciousness, as evidenced by a thought
experiment in which a person simulates understanding a language without comprehension. This
highlights the distinction between mere symbol manipulation and genuine semantic understanding.
Buffalo

Code
Here’s the full python script: gentext.py

https://research.google/pubs/bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding/
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2020.acl-main.463.pdf
https://arxiv.org/abs/2305.19555?utm_source=chatgpt.com
https://magazine.scienceforthepeople.org/vol24-2-dont-be-evil/stochastic-parrots/?utm_source=chatgpt.com
https://gupea.ub.gu.se/handle/2077/83731?utm_source=chatgpt.com
https://cse.buffalo.edu/~rapaport/Papers/Papers.by.Others/Searle/searle80-MindsBrainsProgs-BBS.pdf
file:///C:/Users/User/OneDrive/Documents/Anante.com/blog/Demystifying%20LLMs/gentext.py

	Introduction
	1: Data Preparation and Loading
	2: Simple Letter Frequency
	3: Predicting the Next Letter
	4: Building Up to Words
	5: Word-Level Markov Chains
	6: Extending the Context
	Key Takeaway
	Conclusion
	References
	Code

