
 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 1 of 16

RCS and the Race for Quantum
Supremacy: A Practical Look at
Benchmarks and Real-World Relevance

TL;DR: Google’s Willow chip has smashed its own Random Circuit Sampling (RCS)
benchmarks from the 2019 Sycamore system, re-igniting talk about quantum
supremacy. But do these record-breaking achievements translate into real-world utility
or remain largely symbolic milestones?

In this post, we’ll dissect Random Circuit Sampling (RCS) as a benchmark and highlight
the ways in which claims of quantum supremacy, particularly Google’s recent
announcement, can be misleading without demonstrated real-world applicability. While
headlines often tout RCS as proof that quantum processors are surpassing classical
supercomputers, it’s critical to understand how RCS works and why it may not directly
reflect practical applications. We’ll walk through how RCS experiments are set up, why
they’re considered so hard for classical machines, and where these benchmarks do and
don’t align with real-world applications. Along the way, we’ll highlight the nature of
quantum vs. classical “randomness,” and discuss what these milestones truly mean for
the future of quantum computing. By the end, you’ll not only see how RCS generates
millions of “bitstrings” in minutes but also appreciate why researchers are still wrestling
with the question: is quantum supremacy just around the corner, or do we need more
practical tasks to see genuine quantum advantage?

Introduction
Recently, Google announced that its new “Willow” quantum chip surpassed the record-
breaking Random Circuit Sampling (RCS) metrics once achieved by the 2019
“Sycamore” system - further amplifying the buzz around quantum supremacy. RCS, in
essence, involves running complex, randomly generated quantum circuits on a real
device to see if it can produce results faster or more accurately than a classical
computer can simulate. The fanfare surrounding these new benchmarks, however,
raises an important question: how meaningful is RCS for gauging quantum computing’s
readiness for real-world applications?

https://blog.google/technology/research/google-willow-quantum-chip/
https://blog.google/technology/research/google-willow-quantum-chip/
https://research.google/blog/quantum-supremacy-using-a-programmable-superconducting-processor/
https://research.google/blog/quantum-supremacy-using-a-programmable-superconducting-processor/

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 2 of 16

What is RCS?
Random Circuit Sampling (RCS) involves sampling from the output distribution of a
randomly generated quantum circuit, i.e. a random placement of quantum gates, and
comparing the empirical distribution to what classical simulation would predict. When
the circuit depth and qubit count exceed the classical computability threshold, it can
serve as an empirical demonstration of quantum supremacy.

The Issues with the RCS Benchmark
Despite the hype, there’s a lot that can be criticised about the whole RCS benchmark
being used to demonstrate quantum supremacy:

1. Non-verifiability for large circuits

o Problem: For big RCS experiments (like Willow), classical simulation
times can balloon to astronomical estimates (10^25 years or more).

o Impact: Direct, exact verification of the quantum output is impossible in
practice (as it would take 10^25 years), so researchers rely on partial
checks (smaller circuits, approximate simulations) and statistical
extrapolation, which introduces uncertainty.

2. Limited practical utility

o Problem: RCS is purpose-built to stump classical computers rather than
solve real problems (like optimization or simulating molecules).

o Impact: While it proves certain quantum devices can handle large random
circuits, industry and science gain little direct benefit - no immediate
breakthroughs in anything of scientific benefit.

3. Intentionally “unfair” setup

o Problem: RCS is constructed to exploit quantum parallelism while
presenting an exponential challenge to classical simulation.

o Impact: It shows a “win” for quantum hardware on a contrived task,
raising questions about “supremacy” claims for more general or
commercial applications.

4. Sensitivity to hardware noise

o Problem: Real quantum devices have error rates (gate errors, readout
noise) that degrade fidelity.

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 3 of 16

o Impact: Achieving a distribution close to the ideal quantum output can be
extremely challenging, especially at larger circuit depths. If noise
dominates, it undercuts the very point of the benchmark.

5. Near-impossibility of targeted error correction

o Problem: For highly structured quantum algorithms, engineers can weave
error-correction routines or targeted mitigation strategies into the known
gate sequence. But with random circuits, there’s no predictable structure
or “map” that specifies which qubits will interact when and how - the
gates are randomly placed after all and don’t perform any algorithm at all.

o Impact: Effective error correction usually relies on periodic syndrome
measurements and well-defined layouts. In a random layout, errors can
accumulate rapidly across qubits in ways that are far harder to track or
correct. As a result, small imperfections can derail the output distribution
much more significantly in RCS than they might in a more controlled
algorithmic sequence. Add this to the non-verifiability mentioned as our
first issue and you can see the claims of correctness from Willow’s
processing can become doubtful.

6. Difficult interpretation of “Quantum Supremacy”

o Problem: RCS experiments can yield exciting headlines (“Quantum beats
classical!”), yet the phrase “quantum supremacy” is often
misunderstood.

o Impact: This can oversell the state of quantum tech to the public and
policymakers, conflating a single contrived task with general-purpose
capabilities or “quantum advantage.”

7. Media hype and miscommunication

o Problem: RCS often appears in the press as “Quantum Computer Slays
Supercomputer at Complex Task,” overshadowing nuances.

o Impact: This creates unrealistic expectations, potentially alienating
researchers or industries looking for near-term, real-world ROI. The
discussion of this alone could fill an entire post - just try a media search
and you will see how much repetitious hyperbole was used around the
time of the announcement. Then there’s irrational exuberance applied to
any and all stocks related to quantum computing. What’s to say that
these won’t come crashing down from their infinite P/E ratios in a few
months’ time?

https://search.mediacloud.org/search?q=google%252Cwillow%252Cquantum&nq=&start=12-08-2024&end=12-15-2024&p=onlinenews-mediacloud&ss=&cs=34412234%252C186572515%252C186572435&any=all&name=google%20AND%20willow%20AND%20quantum&edit=false
https://financhle.com/articles/quantum-computing-stocks

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 4 of 16

In short, while RCS is an important stress test and a marquee demonstration for
quantum hardware capability, it comes with intrinsic caveats around verification, real-
world utility, and fairness that limit its broader significance.

However, let’s remain positive and not overly critical; let’s move onto looking at how the
experiment is constructed so that we can seek to reproduce it albeit at a much smaller
scale…

Experimental Process Flow
Below is a simplified sequence flow diagram illustrating an RCS experiment. In an
actual research or industrial setting, each of these steps could involve far more
complexity - multiple layers of error correction, control systems, and in-depth post-
processing. However, for educational purposes, this high-level view helps clarify the
core responsibilities: how a random circuit is generated and sent to the quantum
computer, how the qubits are measured repeatedly (each measurement yielding a
bitstring), and how classical analysis then compares the quantum outputs against a
reference distribution. This streamlined sequence is a handy reference for
understanding the basic workflow behind RCS, without the overhead of real-world
engineering details.

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 5 of 16

The process begins when the Researcher requests a random circuit design from the
Circuit Generator running on a conventional (classical) computer. Once that
specification is returned, the Researcher sends these circuit instructions to the
Quantum Processor. The Quantum Processor then executes the specified random gates
on its qubits for each shot, measures the resulting bitstring, and returns these bitstrings
back to the Researcher. This loop of “execute → measure → return bitstring” continues
until sufficient shots have been run to build up a meaningful output distribution.

Back on the classical side, the Researcher sends these bitstrings to the Bitstring
Analyser, which performs statistical checks - counting how often each bitstring appears
and detecting patterns or “heavy outputs”. In parallel, the Researcher asks the RCS
Simulator for a reference distribution, but since a full classical simulation is typically
feasible only for small circuits, it may be an approximation.

Finally, the Researcher compares the measured quantum distribution against the
classical reference, using metrics like cross-entropy, fidelity, or heavy-output frequency.
This comparison step helps validate whether the quantum device’s results align with

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 6 of 16

the idealized model of the circuit, providing insight into both the quantum hardware’s
performance and the challenge of simulating it on classical machines.

Our Toy RCS Experiment: From Random Bitstrings to
Mock Distribution Analysis
Below you’ll see our RCS process flow diagram again, but this time with our custom
scripts overlaid on the relevant steps. This illustrates how we move from Python scripts
that generate simplistic random bitstrings, through the C program
(generate105qubitbitstrings.c) which creates a more “quantum-like” output at Step 6, to
the R script that collates all returned bitstrings and builds a histogram of their
frequencies. By matching each program to the appropriate stage in the sequence (e.g.,
circuit generation, repeated measurement, and final statistical analysis), we replicate
key elements of an RCS experiment - even if our toy examples can’t come anywhere
close to the complexity of real quantum hardware or the reference classical simulator.

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 7 of 16

Purely Random Bitstring Generation
This Python script below is about as straightforward as it gets: it takes two arguments -
“num_qubits” (the length of each bitstring) and “num_shots” (the total number of
bitstrings to generate). Then it simply loops “num_shots” times, each time printing out a
randomly generated string of 0s and 1s. Although it’s dubbed “naive,” it’s a perfect
baseline demonstration for how raw bitstring sampling might look in an RCS-style
experiment - except it’s purely uniform random and has no correlation between qubits
or shots. Running it with large arguments can produce massive files, as we’ll see below.

def main():

 parser = argparse.ArgumentParser(

 description="Generate random bitstrings given number of qubits and shots."

)

 parser.add_argument("num_qubits", type=int, help="Number of qubits (bitstring length)")

 parser.add_argument("num_shots", type=int, help="Number of bitstrings to generate")

 args = parser.parse_args()

 num_qubits = args.num_qubits

 num_shots = args.num_shots

 for _ in range(num_shots):

 # Generate a random bitstring of length 'num_qubits'

 bits = ''.join(str(random.randint(0, 1)) for _ in range(num_qubits))

 print(bits)

Here, we ran the script with 105 qubits and 18.9 million shots to replicate the data
output of Google’s Willow experiment, in size at least. The command took just over 34
minutes of real time, though the “user” and “sys” times are minimal because the
process is mostly waiting on I/O. Willow produced this quantity of data in under 5
minutes.

07:39:40 User@AN20 ~/QuantumBenchmark 980 0 😊 $ time ./generate_bitstrings.py 105

18900000 > 105qubit_bitstrings.txt

real 34m41.455s

user 0m0.046s

sys 0m0.061s

Finally, to confirm, we see that “wc -l” reports exactly 18,900,000 lines in the output,
each line being a 105-bit string, yielding a total file size of roughly 1.9 GB. This not only
indicates we successfully generated the intended number of bitstrings, but also
highlights how quickly these experiments can produce huge datasets. In a real RCS
experiment, the quantum machine’s measurement shots can likewise accumulate

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 8 of 16

staggering amounts of output data, though the distribution (and hence the challenge in
reproducing it classically) is often far more complex.

08:16:58 User@AN20 ~/QuantumBenchmark 218 0 😊 $ wc -l 105qubit_bitstrings.txt

18900000 105qubit_bitstrings.txt

08:36:59 User@AN20 ~/QuantumBenchmark 419 0 😊 $ du -h 105qubit_bitstrings.txt

1.9G 105qubit_bitstrings.txt

Bitstring Analysis
The following R script (bitstring_collator.r) demonstrates a simple approach to reading a
large text file of bitstrings, computing the frequency of each unique string, and
visualizing the results. It’s designed to handle millions of lines, though as we’ll see,
memory usage can grow quickly if each bitstring is unique (as in a purely random
dataset). The script also produces basic statistics - like how many total shots were
recorded, how many distinct bitstrings were found, and the top five most frequent
bitstrings - before plotting a histogram (in probability form).

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 9 of 16

Parse Command-Line Argument(s)

args <- commandArgs(trailingOnly = TRUE)

if (length(args) < 1) {

 stop("Usage: Rscript bitstring_collator.R <bitstrings.txt file>")

}

bitstring_file <- args[1]

Read Bitstring Data

bitstrings <- readLines(bitstring_file)

cat(

 "Size of 'bitstrings' object:",

 format(object.size(bitstrings), units = "auto"), "\n"

)

Calculate Frequencies

freq_table <- table(bitstrings) # table() gives you counts of each unique bitstring

df_freq <- as.data.frame(freq_table) # convert table to data frame

colnames(df_freq) <- c("bitstring", "count")

Compute Probabilities

df_freq$prob <- df_freq$count / sum(df_freq$count)

Print Basic Stats

cat("Total Shots:", sum(df_freq$count), "\n")

cat("Unique Bitstrings:", nrow(df_freq), "\n\n")

Show the top 5 most common bitstrings

df_freq_sorted <- df_freq[order(-df_freq$count),]

cat("Top 5 Most Frequent Bitstrings:\n")

print(head(df_freq_sorted, 5))

Plot Histogram of counts or probabilities

suppressPackageStartupMessages(library(ggplot2))

p <- ggplot(df_freq, aes(x = bitstring, y = prob)) +

 geom_bar(stat = "identity", fill = "steelblue") +

 labs(

 title = "Histogram of Measured Bitstrings",

 x = "Bitstring",

 y = "Probability"

) +

 theme_minimal()

Save the Plot

output_file <- gsub("\\.bits$", ".histogram.png", bitstring_file)

cat("Saving histogram to", output_file, "\n\n")

ggsave(output_file, p, width = 16, height = 9)

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 10 of 16

By running bitstring_collator.r on our massive 18.9 million line file of 105-qubit
bitstrings, we quickly see the practical impacts of storing so many unique strings in
memory. The script reports 3.2 GB of memory usage just to load the dataset - reflecting
the fact that each 105-bit string is stored as a long character vector in R. We also
observe that every shot is unique (18.9 million unique strings), confirming that the
purely random generator had zero collisions. The script was interrupted before it
attempted to draw the histogram - it would have “flat-lined” at y=1 for 18.9 million
values of x.

08:17:08 User@AN20 ~/QuantumBenchmark 228 0 😊 $ time ./bitstring_collator.R

105qubit_bitstrings.txt

Size of 'bitstrings' object: 3.2 Gb

Total Shots: 18900000

Unique Bitstrings: 18900000

real 18m50.782s

user 0m0.000s

sys 0m0.046s

The Vastness of the State Space
To get a sense of scale, 2105 is approximately 4.03×1031 - that’s a 4 followed by 31 zeros.
Put another way, there are more possible states in 105 qubits than there are stars in the
observable universe by many orders of magnitude. This is why even 18.9 million
samples barely scratches the surface of such an enormous space, and why collisions
are so unlikely when the distribution is nearly uniform.

And to get a rough sense of how many times we would have to produce 18.9 million 105-
bit strings before expecting even one collision, we can invoke the birthday paradox. In a
uniform distribution of size 2105, the expected number of draws needed for a ~50%
chance of collision is on the order of:

√2105 = 2
105

2 ≈ 252.5 ≈ 6.4 × 1015

Each block of 18.9 million (1.89×107) bitstrings is one “batch” of draws. So, the number
of batches needed for an expected collision is roughly:

6.4 × 1015

1.89 × 107
≈ 3.4 × 108 ≈ 340 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

Putting That in Perspective

• Total bitstrings:

3.4 × 108 × 1.89 × 107 ≈ 6.4 × 1015

• Total data size (if each batch is ~1.9 GB):

https://en.wikipedia.org/wiki/Birthday_problem

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 11 of 16

3.4 × 108 × 1.9𝐺𝐵 ≈ 6.5 × 108𝐺𝐵 ≈ 650𝑃𝐵

• That’s several hundred thousand consumer hard disks: enough to store all of
Netflix’s content (approx. 20,000 titles) nearly 8,000 times; Spotify’s library of
100 million songs, 6,000 times; 1,500 copies of the full Wikipedia; 60,000 copies
of Steam’s game catalogue; and almost all of Instagram or Facebook1. As for
scientific data, 11,000 years of Hubble data, 31,00 years of JWST and about 20
years of CERN’s output

• Total time: If each batch took ~30–35 minutes in our Python script, it’d take about
20,000 years to produce a batch of 105-qubit bitstrings (with each batch being
18.9 million) to expect to get just one collision.

This is why, in purely uniform sampling of 105-bit outputs, collisions are basically never
observed for any realistic number of shots. In the next example, when we introduce
skew or “heavy” outputs, we’ll see how this same R script can reveal drastically
different patterns of repetition and collisions.

Beyond Uniform Randomness: A Toy RCS Generator in C
After experimenting with our naive Python bitstring generator, we learned two important
lessons:

1. Pure uniform randomness across 105-bit strings leads to virtually no collisions in
tens of millions of samples, making it a poor analogue for real RCS outcomes.

2. Handling data at scale - both in memory and I/O - can become a major
bottleneck if every bit is naively stored as an entire character.

To address these points, we turn to a C-based approach. First, we introduce non-
uniform distributions (log-normal amplitudes) to ensure some “heavy” bitstrings appear
more often. Second, we store each 105-bit pattern in 14 bytes rather than the earlier
105 bytes, packing bits and avoiding the inefficiency of strings. The resulting program
still can’t replicate the full complexity of a quantum circuit’s output, but it produces a
more skewed distribution - helping us see collisions, large-scale repetition, and other
phenomena reminiscent of real RCS experiments.

Here are some key snippets from the program:

Th Box–Muller transform function draws two uniform [0,1] samples (u1, u2) and
converts them to a Gaussian (μ=0, σ=1) random number. The program uses this to
create a log-normal amplitude later, which helps shape the distribution of output strings
so some appear more frequently - mimicking a skewed, RCS-like distribution.

1 Numbers based on publicly available data as of December 2024, typically calculated by the claimed
content added daily and earlier trends.

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://www.math.net/gaussian-distribution
https://towardsdatascience.com/log-normal-distribution-a-simple-explanation-7605864fb67c

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 12 of 16

static double rand_normal()

{

 double u1 = (double)rand() / (double)RAND_MAX;

 double u2 = (double)rand() / (double)RAND_MAX;

 double r = sqrt(-2.0 * log(u1));

 double theta = 2.0 * M_PI * u2;

 double z = r * cos(theta); // normal(0,1)

 return z;

}

The following code assigns a log-normal amplitude to each pattern. The squaring that
amplitude makes the distribution even more skewed, so a small fraction of patterns end
up with disproportionately high probability. It then cumulatively sums these weights and
normalizes them, building a Cumulative Distribution Function (CDF).

 for (int i = 0; i < subset_size; i++)

 {

 double z = rand_normal(); // normal(0,1)

 double amplitude = exp(z); // log-normal(0,1), a positive value

 double w = amplitude * amplitude; // square for a more pronounced weight

 weights[i] = w;

 }

…

 for (int i = 0; i < subset_size; i++)

 {

 running += weights[i];

 cdf[i] = running / sum_w; // normalized

 }

By sampling from this CDF, the program enforces that high-weight patterns appear more
often in the final output file - similar to how some bitstrings in an RCS experiment can
have a higher amplitude (and thus higher probability).

Each shot picks a random double r ∈ [0,1] and searches the CDF to find which pattern’s
probability range it falls into. This binary search makes lookups O(log n) rather than O(n)
- important if subset_size is large.

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 13 of 16

static int find_index_in_cdf(const double *cdf, int size, double r)

{

 int left = 0;

 int right = size - 1;

 while (left < right)

 {

 int mid = (left + right) / 2;

 if (cdf[mid] < r)

 {

 left = mid + 1;

 }

 else

 {

 right = mid;

 }

 }

 return left; // left == right => the position

}

Together, these snippets show how the C program creates a nonuniform, skewed
distribution of 105-bit strings. It’s just a toy version of “random circuit sampling” -
instead of deriving probabilities from an actual quantum circuit, it uses log-normal
weights to produce “heavy outputs.” The goal is to generate collisions and an uneven
histogram that’s a bit more representative of realistic (but still vastly simplified)
quantum RCS outputs.

Here is the compiled C program being run with a subset size of 10,000 and our usual
18.9 million shots (in keeping with the Willow experiment) followed by the
bitstring_collator.r script:

06:28:21 User@AN20 ~/QuantumBenchmark 101 0 😊 $ time

./generate105qubitbitstrings.exe 10000 18900000 105qubit_lognormal_bitstrings.txt

real 3m10.805s

user 3m6.796s

sys 0m0.859s

07:37:30 User@AN20 ~/QuantumBenchmark 250 0 😊 $ time ./bitstring_collator.R

105qubit_lognormal_bitstrings.txt

Size of 'bitstrings' object: 145.9 Mb

Total Shots: 18900000

Unique Bitstrings: 9955

Top 5 Most Frequent Bitstrings:

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 14 of 16

bitstring

7865

110010000000111001001001000110110101011110000101000111110100101000100011111001011001010

000001010100011000

5343

100001110010000101101010010001011011100001010001110100010010110011001111010111101101000

010101000110011000

1854

001011110000001100101000110111000010000001000011001110110010110100101111010010010111110

001100000101110011

3337

010101000101001101111111010101001000000011011111011110100110101110100110111001111111110

010100001001100001

503

000011001101001110001111011101101001101001001110011110010001000001100101111010101101100

010001000101001111

 count prob

7865 737499 0.039021111

5343 371077 0.019633704

1854 280379 0.014834868

3337 204757 0.010833704

503 170701 0.009031799

real 0m25.798s

user 0m0.000s

sys 0m0.015s

Notice several important differences compared to the Python scenario:

1. Faster Generation

o The C program finishes in just 3 minutes and 10 seconds for 18.9 million
shots, showcasing the efficiency of bit-packing, streamlined data
structures and the pure speed of C.

2. Memory and Collisions

o The R script reports ~146 MB to store all 18.9 million lines, which is far
less than the 3.2 GB from the uniform dataset. This is largely because we
now have only 9,955 unique bitstrings (versus 18.9 million previously). The
top 5 alone accumulate substantial counts, demonstrating a non-
uniform, highly skewed distribution.

3. Representative “Heavy Outputs”

o Some bitstrings appear hundreds of thousands of times, each with a
probability of a few percent. This stands in sharp contrast to the 1-to-1
mapping of uniform generation, where collisions were non-existent.

Overall, this more realistic (though still toy) approach illustrates how skew in the
distribution can force actual repetition and a “heavy-tail” effect - vaguely mirroring the

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 15 of 16

kind of output that might arise from an actual Random Circuit Sampling experiment on
quantum hardware.

Finally, here is the histogram generated by the R script:

Conclusion
In this article, we replicated the basic flow of a Random Circuit Sampling experiment-
albeit in a toy fashion. We showed how uniform random bitstrings fail to capture any real
collisions and how a lognormal-based approach in C yields a more skewed distribution
that hints at the kind of “heavy outputs” often reported in true RCS studies. By using
Python for naive generation, a C program for more nuanced sampling, and R for
collation and histogram analysis, we illustrated several key lessons:

• Scale Matters: Even tens of millions of bitstrings barely graze the surface of a
105-bit space, making collisions extraordinarily rare without a skewed
distribution.

• Data Handling: Bit-packing and more efficient I/O can drastically reduce run
times and memory usage compared to naive approaches.

• Skew Produces Meaningful Repetitions: A non-uniform distribution - though still
contrived - reveals the collisions and “heavy outputs” more akin to quantum
sampling than a purely flat distribution.

 RCS and the Race for Quantum Supremacy: A Practical Look at Benchmarks and Real-World Relevance

Copyright © Anante Ltd. (2024). Sharing is caring, but please give credit. Page 16 of 16

The [F]utility of RCS Benchmarking
Yet, it’s important to recognize the limitations of RCS itself. The benchmark is
intentionally designed to be hard for classical computers but more “natural” for
quantum devices. In this sense, it serves as a theoretical stress test rather than a
practical solution to a real-world computational need. Some argue that this mismatch
renders RCS an unfair comparison: it doesn’t address industrial problems like
optimization or cryptography, yet it trumpets “supremacy” simply because classical
simulation at large scale becomes infeasible.

At the same time, RCS has value as a demonstration of hardware maturity - showing
that qubits can generate massive, complex distributions no known classical machine
can match. But its “[f]utility” lies in the fact that, while it makes for a bold headline, it
doesn’t immediately translate into breakthroughs in commercial or scientific fields.
Instead, RCS is a niche benchmark that leverages quantum effects in a contrived
setting, making it a spectacular but ultimately futile show of power.

What’s Next
Looking ahead, we’ll push beyond purely synthetic datasets. In our next post, we’ll
generate actual random quantum circuits, run them on a small, real quantum
processor, and compare those outputs against a well-established classical simulator.
Naturally, we’re limited to only a few qubits, as large-scale classical simulation remains
out of reach for everyone - even Google. Still, it’s a vital step toward understanding the
true nature of quantum supremacy claims: not only how quantum devices handle
contrived tasks, but also whether these insights hint at future, genuinely useful
quantum applications.

